Anti CD3 Antibody (Clone: 17A2) | PA007199.m2b
$150.00 – $900.00
Recombinant rat IgG2b isotype controls are available. Condition of sample preparation and optimal sample dilution should be determined experimentally by the investigator.
- Details & Specifications
- References
- More Offers
Catalog No. | PA007199.m2b |
---|---|
Product Name | Anti CD3 Antibody (Clone: 17A2) | PA007199.m2b |
Supplier Name | Syd Labs, Inc. |
Brand Name | Syd Labs |
Clone | 17A2. |
Isotype | Mouse IgG2b Kappa |
Source/Host | The anti-mouse CD3 monoclonal antibody (clone: 17A2) was produced in mammalian cells. |
Specificity/Sensitivity | The in vivo grade recombinant rat monoclonal antibody (clone: 17A2) specifically binds to the mouse T cell receptor CD3. |
Applications | ELISA, neutralization, functional assays such as bioanalytical PK and ADA assays, and those assays for studying biological pathways affected by the mouse CD3 protein. |
Form Of Antibody | 0.2 uM filtered solution, pH 7.4, no stabilizers or preservatives. |
Endotoxin | < 1 EU per 1 mg of the protein by the LAL method. |
Purity | >95% by SDS-PAGE under reducing conditions and HPLC. |
Shipping | The In vivo Grade Recombinant Anti-mouse CD3 Monoclonal Antibody (Clone: 17A2), Mouse IgG2b Kappa is shipped with ice pack. Upon receipt, store it immediately at the temperature recommended below. |
Stability & Storage | Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70°C as supplied. 1 month from date of receipt, 2 to 8°C as supplied. |
Note | Recombinant rat IgG2b isotype controls are available. Condition of sample preparation and optimal sample dilution should be determined experimentally by the investigator. |
Order Offline | Phone: 1-617-401-8149 Fax: 1-617-606-5022 Email: message@sydlabs.com Or leave a message with a formal purchase order (PO) Or credit card. |
Description
PA007199.m2b: Recombinant Anti-mouse CD3 Monoclonal Antibody (Clone: 17A2), Mouse IgG2b Kappa, In vivo Grade
References for Anti CD3 Antibody (Clone: 17A2):
1、Increased number of T cells and exacerbated inflammatory pathophysiology in a human IgG4 knock-in MRL/lpr mouse model
Yoshie Gon,et al.PLoS One. 2023.PMCID: PMC9916631
“Immunoglobulin (Ig) G4 is an IgG subclass that can exhibit inhibitory functions under certain conditions because of its capacity to carry out Fab-arm exchange, inability to form immune complexes, and lack of antibody-dependent and complement-dependent cytotoxicity. Although several diseases have been associated with IgG4, its role in the disease pathogeneses remains unclear. Since mice do not express an IgG subclass that is identical to the human IgG4 (hIgG4), we generated hIGHG4 knock-in (KI) mice and analyzed their phenotypes. To preserve the rearrangement of the variable, diversity, and joining regions in the IGH gene, we transfected a constant region of the hIGHG4 gene into C57BL/6NCrSlc mice by using a gene targeting method. Although the mRNA expression of hIGHG4 was detected in the murine spleen, the serum level of the hIgG4 protein was low in C57BL/6-IgG4KI mice. To enhance the production of IgG4, we established an MRL/lpr-IgG4KI mice model by backcrossing. These mice showed a high IgG4 concentration in the sera and increased populations of IgG4-positive plasma cells and CD3+B220+CD138+ T cells in the spleen. Moreover, these mice showed aggravated inflammation in organs, such as the salivary glands and stomach. The MRL/lpr-IgG4KI mouse model established in the present study might be useful for studying IgG4-related disease, IgG4-type antibody-related diseases, and allergic diseases.”
2、Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model
Peter Ruf,et al.J Transl Med. 2012.PMCID: PMC3543252
“Background
Trifunctional bispecific antibodies (trAb) are a special class of bispecific molecules recruiting and activating T cells and accessory immune cells simultaneously at the targeted tumor. The new trAb Ektomab that targets the melanoma-associated ganglioside antigen GD2 and the signaling molecule human CD3 (anti CD3 antibody) on T cells demonstrated potent T-cell activation and tumor cell destruction in vitro. However, the relatively low affinity for the GD2 antigen raised the question of its therapeutic capability. To further evaluate its efficacy in vivo it was necessary to establish a mouse model.
Methods
We generated the surrogate trAb Surek, which possesses the identical anti-GD2 binding arm as Ektomab, but targets mouse CD3 (mCD3) instead of hCD3, and evaluated its chemical and functional quality as a therapeutic antibody homologue. The therapeutic and immunizing potential of Surek was investigated using B78-D14, a B16 melanoma transfected with GD2 and GD3 synthases and showing strong GD2 surface expression. The induction of tumor-associated and autoreactive antibodies was evaluated.
Results
Despite its low affinity of approximately 107 M-1 for GD2, Surek exerted efficient tumor cell destruction in vitro at an EC50 of 70ng/ml [0.47nM]. Furthermore, Surek showed strong therapeutic efficacy in a dose-dependent manner and is superior to the parental GD2 mono-specific antibody, while the use of a control trAb with irrelevant target specificity had no effect. The therapeutic activity of Surek was strictly dependent on CD4+ and CD8+ T cells, and cured mice developed a long-term memory response against a second challenge even with GD2-negative B16 melanoma cells. Moreover, tumor protection was associated with humoral immune responses dominated by IgG2a and IgG3 tumor-reactive antibodies indicating a Th1-biased immune response. Autoreactive antibodies against the GD2 target antigen were not induced.
Conclusion
Our data suggest that Surek revealed strong tumor elimination and anti-tumor immunization capabilities. The results warrant further clinical development of the human therapeutic equivalent antibody Ektomab.”
3、Marginal zone B cells mediate a CD4 T-cell–dependent extrafollicular antibody response following RBC transfusion in mice
Patricia E Zerra,et al.Blood. 2021.PMCID: PMC8394907
“Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell–deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell–mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.”
4、A novel mouse strain optimized for chronic human antibody administration
Aaron Gupta,et al.Proc Natl Acad Sci U S A. 2022.PMCID: PMC8915995
“Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex–mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.”
5、Factor VIII antibody immune complexes modulate the humoral response to factor VIII in an epitope-dependent manner
Glaivy Batsuli,et al.Front Immunol. 2023.PMCID: PMC10501482
“Introduction
Soluble antigens complexed with immunoglobulin G (IgG) antibodies can induce robust adaptive immune responses in vitro and in animal models of disease. Factor VIII immune complexes (FVIII-ICs) have been detected in individuals with hemophilia A and severe von Willebrand disease following FVIII infusions. Yet, it is unclear if and how FVIII-ICs affect antibody development over time.
Methods
In this study, we analyzed internalization of FVIII complexed with epitope-mapped FVIII-specific IgG monoclonal antibodies (MAbs) by murine bone marrow-derived dendritic cells (BMDCs) in vitro and antibody development in hemophilia A (FVIII-/-) mice injected with FVIII-IC over time.
Results
FVIII complexed with 2-116 (A1 domain MAb), 2-113 (A3 domain MAb), and I55 (C2 domain MAb) significantly increased FVIII uptake by BMDC but only FVIII/2-116 enhanced antibody titers in FVIII-/- mice compared to FVIII alone. FVIII/4A4 (A2 domain MAb) showed similar FVIII uptake by BMDC to that of isolated FVIII yet significantly increased antibody titers when injected in FVIII-/- mice. Enhanced antibody responses observed with FVIII/2-116 and FVIII/4A4 complexes in vivo were abrogated in the absence of the FVIII carrier protein von Willebrand factor.
Conclusion
These findings suggest that a subset of FVIII-IC modulates the humoral response to FVIII in an epitope-dependent manner, which may provide insight into the antibody response observed in some patients with hemophilia A.”
6、Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
Andrea Cossarizza,et al.Eur J Immunol. 2024.PMCID: PMC11115438
“The third edition of anti CD3 antibody Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.”
7、A TNIP1-driven systemic autoimmune disorder with elevated IgG4
Arti Medhavy,et al.Nat Immunol. 2024.PMCID: PMC11362012
“Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1Q333P variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88. The variant increased interferon-β without altering nuclear factor kappa-light-chain-enhancer of activated B cells signaling, and impaired MyD88 and IRAK1 recruitment to autophagosomes. Additionally, the Q333P variant impaired TNIP1 localization to damaged mitochondria and mitophagosome formation. Damaged mitochondria were abundant in the salivary epithelial cells of Tnip1Q346P mice. These findings suggest that TNIP1-mediated autoimmunity may be a consequence of increased TLR7 signaling due to impaired recruitment of downstream signaling molecules and damaged mitochondria to autophagosomes and may thus respond to TLR7-targeted therapeutics.”
8、Characterisation of a K390R ITK Kinase Dead Transgenic Mouse – Implications for ITK as a Therapeutic Target
Angela Deakin,et al.PLoS One. 2014.PMCID: PMC4174519
“Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk−/−) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk−/−, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αβCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk−/−and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.”
9、Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice
Tiffany B L Costa-Gouvea,et al.Front Immunol. 2024.PMCID: PMC11033515
“Malaria remains a global health challenge, necessitating anti CD3 antibody the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.”
10、Antibody-mediated depletion of programmed death 1-positive (PD-1+) cells
Yujia Zhai,et al.J Control Release. 2023.PMCID: PMC10699550
“PD-1 immune checkpoint has been intensively investigated in pathogenesis and treatments for cancer and autoimmune diseases. Cells that express PD-1 (PD-1+ cells) draw ever-increasing attention in cancer and autoimmune disease research although the role of PD-1+ cells in the progression and treatments of these diseases remains largely ambiguous. One definite approach to elucidate their roles is to deplete these cells in disease settings and examine how the depletion impacts disease progression and treatments. To execute the depletion, we designed and generated the first depleting antibody (D-αPD-1) that specifically ablates PD-1+ cells. D-αPD-1 has the same variable domains as an anti-mouse PD-1 blocking antibody (RMP1–14). The constant domains of D-αPD-1 were derived from mouse IgG2a heavy and κ-light chain, respectively. D-αPD-1 was verified to bind with mouse PD-1 as well as mouse FcγRIV, an immuno-activating Fc receptor. The cell depletion effect of D-αPD-1 was confirmed in vivo using a PD-1+ cell transferring model. Since transferred PD-1+ cells, EL4 cells, are tumorigenic and EL4 tumors are lethal to host mice, the depleting effect of D-αPD-1 was also manifested by an absolute survival among the antibody-treated mice while groups receiving control treatments had median survival time of merely approximately 30 days. Furthermore, we found that D-αPD-1 leads to elimination of PD-1+ cells through antibody-dependent cell-mediate phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) mechanisms. These results, altogether, confirmed the specificity and effectiveness of D-αPD-1. The results also highlighted that D-αPD-1 is a robust tool to study PD-1+ cells in cancer and autoimmune diseases and a potential therapeutic for these diseases.”
Syd Labs provides the following in vivo grade recombinant anti-human CD3 monoclonal antibodies:
Muromonab biosimilar, research grade, anti-human CD3 monoclonal antibody (Clone: OKT3)
Teplizumab biosimilar, research grade, anti-human CD3 monoclonal antibody (Clone: OKT3)
Foralumab biosimilar, research grade, anti-human CD3 monoclonal antibody (Clone: OKT3)
Anti-human CD3 monoclonal antibody (Clone: OKT3)
Anti-human CD3 monoclonal antibody (Clone: SP34-2)
Recombinant Anti-human CD3 monoclonal antibody (Clone: UCHT1)
Recombinant Anti-human CD3 monoclonal antibody (Clone: 12F6)
Syd Labs provides the following in vivo grade recombinant anti-human CD3 bispecific antibodies:
Recombinant Anti-human CD3 / CD3 Bispecific Antibody (Clone: OKT3 / UCHT1)
Recombinant Anti-human CD3 / CD3 Bispecific Antibody (Clone: OKT3 / SP34-2)
Recombinant Anti-human CD3 / CD3 Bispecific Antibody (Clone: SP34-2 / OKT3)
Syd Labs provides the following in vivo grade recombinant anti-mouse CD3 monoclonal antibodies:
Recombinant Anti-mouse CD3e monoclonal antibody (Clone: 145-2C11)
Recombinant Anti-mouse CD3e monoclonal antibody (Clone: 500A2)
Recombinant Anti-mouse CD3 monoclonal antibody (Clone: 17A2)
Syd Labs provides the following recombinant anti-human CD3 monoclonal antibodies for flow cytometry:
Recombinant Anti-human CD3 monoclonal antibody (Clone: OKT3) for flow cytometry
Recombinant Anti-human CD3 monoclonal antibody (Clone: UCHT1) for flow cytometry
Recombinant Anti-human CD3 monoclonal antibody (Clone: 12F6) for flow cytometry
Recombinant Anti-human CD3 monoclonal antibody (Clone: SP34-2) for flow cytometry
Syd Labs provides the following recombinant anti-mouse CD3 monoclonal antibodies for flow cytometry:
Recombinant Anti-mouse CD3 monoclonal antibody (Clone: 17A2) for flow cytometry
Recombinant Anti-mouse CD3e monoclonal antibody (Clone: 145-2C11) for flow cytometry
Recombinant Anti-mouse CD3e monoclonal antibody (Clone: 500A2) for flow cytometry
Anti-mouse CD3 Antibody (17A2) from: Anti-mouse CD3 Monoclonal Antibody (Clone: 17A2): PA007199.m2b Syd Labs